UJF - SM3a2TD 41/10/99

- 1. Montrer que $(a_1, a_2, \dots, a_k) = (a_1, a_2)(a_2, a_3)(a_3, a_4) \dots (a_{k-1}, a_k)$. Quelle est la signature d'un k-cycle?
- 2. Calculer la signature des permutations:
- 3. Soit $E = \{M \in \mathcal{M}_n(\mathbb{R}) | \forall i, \Sigma \}$
 - (a) Montrer que E est stable par multiplication.
 - (b) Montrer que $(\exists k \in \mathbb{R})(\forall M \in E)(|\det M| \le k)$.
 - (c) En déduire que $(\forall M \in E)(|\det M| \le 1)$.
- 4. Soient $a_1, \ldots, a_n, b_1, \ldots, b_n$ des réels et p un entier tel que $p \leq n-1$. Calculer le déterminant de la matrice Mde coefficients $m_{ij} = (a_i + b_j)^p$. (on pourra écrire M comme produit de deux matrices)
- 5. Soit $u_n = \lambda_1 a_1^n + \lambda_2 a_2^n + \ldots + \lambda_p a_p^n$ où les a_i sont des complexes deux à deux distincts, et les λ_i des complexes non nuls.

On suppose que $\lim_{\infty} u = 0$ et on veut montrer que pour tout $i, |a_i| < 1$.

Soit
$$U_n = (u_n, u_{n+1}, \dots, u_{n+p-1}), A_n = (a_1^n, a_2^n, \dots, a_p^n).$$

- Montrer que pour tout $n, U_n = MA_n$ où M est une matrice indépendante de n.
- Montrer que pour tout i, la suite $(a_i^n)_n$ est combinaison linéaire des suites $(u_n)_n, \ldots, (u_{n+p-1})_n$.
- 6. Soit $M = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \dots & a_{n-2} \\ \vdots & & & \vdots \\ a_2 & a_3 & \dots & \dots & a_1 \\ \vdots & & & & \vdots \\ a_n & a_n & & & & a_n \end{pmatrix}$ et $P = a_0 + a_1 X + \dots a_{n-1} X^{n-1}$.

Montrer que det $M=\prod_{k=0}^{n-1}P(\omega_k)$ où $\omega_k=e^{2i\pi k/n}$. (considérer $M\Omega,\,\Omega$ étant la matrice de Van Der Monde des ω_k

- 7. Nature des séries $\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n}}$ et $\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n}+(-1)^n}$
- 8. Nature en fonction de $x, y \in \mathbb{R}$ de la série $\sum_{n>1} \frac{x^n}{n+y^n}$
- 9. Nature de la série de terme général $u_n = \sin 2\pi \sqrt{n^4 + 1}$.
- 10. On considère $\sum_{n\geq 1} (-1)^n (1-\cos\frac{1}{n^{\alpha}})$, avec $\alpha\geq 0$.

Déterminer les valeurs de α pour les quelles la série est

- absolument convergente
- convergente mais non absolument convergente
- 11. Soit (u_n) une suite à terme strictement positifs telle que $\frac{u_{n+1}}{u_n} = 1 \frac{\alpha}{n} + O(\frac{1}{n^2}), \ \alpha \in \mathbb{R}_+$. On veut étudier la nature de la série $\sum u_n$.
 - (a) Montrer que $\frac{(n+1)^{\alpha}}{n^{\alpha}} \frac{u_{n+1}}{u_n} = 1 + O(\frac{1}{n^2}).$
 - (b) En déduire que la suite $\ln(n^{\alpha}u_n)$ converge.
- 12. Soit u_n la suite définie par $u_0 > 0$, $\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$ ou a, b > 0. Donner la nature de la série $\sum u_n$, et sa somme en cas de convergence.