TD 9 : équations différentielles

T Exercices théoriques :

1. Résoudre les équations différentielles du premier ordre suivantes : (à chaque fois, préciser le type d'équation : dérivée, équation à variables séparables, homogène, linéaire...)

(a)
$$y' = 2y$$
, (b) $y' + y = x^2$, (c) $y' = \frac{y}{x}$,

(d)
$$y' = 3\frac{y}{x} - x$$
, (e) $y' - y\cos x = \cos x$, (f) $y' \ln x + \frac{y}{x} = 0$,

(g)
$$y' = xe^y$$
, (i) $y' = \sqrt{1 - y^2}$,

(j)
$$(x-y)y' = x+y$$
, (k) $y' - 2xy = 3xe^{x^2}$, (l) $y' + \frac{y}{\sqrt{x}} = \frac{1}{\sqrt{x}}$,

2. Résoudre les équations différentielles du second ordre suivantes :

(a)
$$y'' = \omega^2 y$$
, (b) $y'' + \omega^2 y = 1$, (c) $2y'' + 3y' - 2y = 0$, (d) $y'' - 2y' + 10y = 5$, (e) $y'' + 2y' + 5y = 5\cos x$, (f) $y'' + 3y' + 2y = e^{-2x}$, (g) $y'' + 2y' + y = 2$,

3. Si *a* est un réel positif, trouver une primitive de $x \mapsto \frac{1}{x^2 - a^2}$.

En déduire la solution générale de l'équation différentielle $\frac{y'}{y^2 - a^2} = b$, où a > 0 et $b \in \mathbb{R}$.

4. Si f et g sont deux fonctions réelles, on définit $(f*g)(t) = \int_0^t f(s)g(t-s) \, ds$. On considère l'équation différentielle y' + ay = f(t), où a est une constante et f une fonction. Montrer que si $h(t) = e^{-at}$, y = f*h avec est la solution de l'équation vérifiant y(0) = 0. Calculer y si f est la fonction qui vaut 1 sur [0;1] et 0 ailleurs.

P Exercices pratiques:

- 1. Circuit électrique LR série : Le courant i(t) qui circule dans un circuit LR soumis à une tension $u(t) = U_0 \sin \omega t$ vérifie l'équation différentielle $L\frac{di}{dt} + Ri = U_0 \sin \omega t$. Déterminer i si i(0) = 0.
- 2. **Parachute :** Un parachutiste est freiné par la résistance de l'air, proportionnelle au carré de sa vitesse. On note $k=30~{\rm Nm^{-2}s^2}$ ce coefficient de proportionnalité, et $m=80{\rm kg}$ la masse du parachutiste.
 - (a) Montrer que l'équation différentielle dont la vitesse v est solution est $v' = -\frac{k}{m}v^2 + g$.
 - (b) Résoudre l'équation du mouvement si la vitesse initiale est de $v(0) = 200 \text{ km.h}^{-1}$ (vitesse "limite" atteint lors de la chute libre).
 - (c) Quelle est la vitesse limite du mouvement?
 - (d) Au bout de combien de temps la vitesse est-elle devenue inférieure à la vitesse de 20 km.h⁻¹ ?
- 3. Circuit électrique LC: On place en série une bobine d'inductance L et un condensateur de capacité C, soumis à une tension $u(t) = U_0 \sin \omega t$. Le courant électrique dans le circuit vérifie alors l'équation différentielle $L\frac{d^2i}{dt^2} + \frac{i}{C} = \omega U_0 \cos \omega t$.

Déterminer i si i(0) = 0 et $\frac{di}{dt}(0) = 0$.

CORRECTION DU TD:

T Exercices théoriques :

- 1. (a) Eq.linéaire du premier ordre à coefficients constants, sans second membre : $y(x) = Ce^{2x}$, $C \in \mathbb{R}$.
 - (b) Equation linéaire du premier ordre à coefficients constants, avec second membre. La solution générale de l'équation sans second membre associée est Ce^{-x} , $C \in \mathbb{R}$.

On cherche une solution particulière de la forme $ax^2 + bx + c$ (on pourrait aussi utiliser la méthode de variation de la constante); alors a = 1, 2a + b = 0 et b + c = 0, donc a = 1, b = -2, c = 2. Par conséquent, la solution générale est $y(x) = x^2 - 2x + 2 + Ce^{-x}$.

- (c) Quatre possibilités...au moins :
- on peut remarquer directement que toute fonction y(x) = Cx est solution.
- on peut voir cette équation comme une équation linéaire du premier ordre sans second membre, et utiliser le cours : la solution est $Ce^{\int \frac{dx}{x}}$ soit $Ce^{\ln x} = Cx$.
- on peut résoudre comme une équation à variables séparables : y'/y = 1/x d'où $\ln |y| = \ln |x| + c$ donc y(x) = Cx.
- on peut résoudre comme une équation homogène en posant t = y/x. Alors y = tx et y' = t'x + t. Et ici, l'équation devient donc t'x = 0, donc t' = 0, t = y/x est constant...
- (d) Equation différentielle du premier ordre avec second membre.

La solution de l'équation sans second membre est Cx^3 , $C \in \mathbb{R}$, et on remarque que $y = x^2$ est solution (directement, ou bien avec une méthode de variation de la constante). Ainsi, la solution générale est $Cx^3 + x^2$, $C \in \mathbb{R}$.

- (e) On résoud l'équation sans second membre : $y'/y = \cos x$, donc $\ln |y| = \sin x + c$, et $y = Ce^{\sin x}$. Pour trouver une solution particulière, on peut essayer la méthode de "variation de la constante" : $y(x) = C(x)e^{\sin x}$, donc en dérivant et en ré-injectant dans l'équation, $C'(x) = \cos x \, e^{-\sin x}$, donc en primitivant : $C(x) = -e^{-\sin x} + c$. Ainsi, $y(x) = 1 + ce^{\sin x}$, $c \in \mathbb{R}$.
- (f) On reconnaît une dérivée : l'équation équivaut à $(y \ln x)' = 0$, donc $y \ln x = c$, $y = \frac{c}{\ln x}$.
- (g) Equation à variables séparables, on reconnait une dérivée directement : $y'e^{-y} = x$, donc $-e^{-y} = x^2/2 + c$, et donc $y = -\ln(-x^2/2 + c)$, $c \in \mathbb{R}$.
- (h) Une primitive de yy' est $y^2/2$, donc $y^2 = x^2 + c$, les solutions sont les $y = \pm \sqrt{x+c}$, c réel.
- (i) y = 1 et y = -1 sont deux solutions; sinon, on divise par $\sqrt{1 y^2}$: une primitive de $\frac{y'}{\sqrt{1 y^2}}$ est arcsin y = x + c, $y = \sin(x + c)$, $c \in \mathbb{R}$.
- (j) On commence par transformer en $y' = \frac{x+y}{x-y} = \frac{1+y/x}{1-y/x}$, qui est une équation homogène.

On pose t = y/x. Alors $y' = \frac{1+t}{1-t} = t'x + t$, d'où $t'x = \frac{1+t}{1-t} - 1 = \frac{2t}{1-t}$, et cette équation est à variables séparables : $\frac{(1-t)t'}{t} = \frac{2}{x}$. On primitive : $\ln t - t = x^2$. Mais on ne peut expliciter t, ni y.

- (k) Equation linéaire du premier ordre, on résoud d'abord l'équation sans second membre par y'/y = 2x donc $y = Ce^{x^2}$. Alors par variation de la constante, C'(x) = 3x d'où $C(x) = 3x^2/2$, et finalement $y(x) = (3x^2/2 + c)e^{x^2}$.
- (1) Equation linéaire du premier ordre, on résoud d'abord l'équation sans second membre par $y'/y=-1/\sqrt{x}$ soit $y=Ce^{-2\sqrt{x}}$. Puis par variation de la constante, $C'(x)=e^{2\sqrt{x}}/\sqrt{x}$, et donc $C(x)=c+e^{2\sqrt{x}}$. Donc $y(x)=ce^{-2\sqrt{x}}+1$ (on pouvait remarquer directement que 1 est une fonction solution!!)
- 2. (a) Equation différentielle du second ordre à coefficients constants, sans second membre : $y(t) = a \operatorname{ch} \omega t + b \operatorname{sh} \omega t$, $a, b \in \mathbb{R}$.

- (b) Equation différentielle du second ordre à coefficients constants, sans second membre : $y(t) = a\cos\omega t + b\sin\omega t$, $a,b \in \mathbb{R}$ (ou, si l'on préfère, $y(t) = A\cos(\omega t + \varphi)$, $A, \varphi \in \mathbb{R}$)
- (c) Equation différentielle du second ordre à coefficients constants, sans second membre : l'équation du second degré associée est $2X^2 + 3X 2 = 0$, de solutions -2 et 1/2, donc $y(t) = ae^{-2t} + be^{t/2}$, $a, b \in \mathbb{R}$.
- (d) Equation différentielle du second ordre à coefficients constants, avec second membre : l'équation du second degré associée est $X^2-2X+10=0$, de solutions 1+3j et 1-3j. La solution générale de l'équation sans second membre est donc $(a\cos 3t+b\sin 3t)e^t$. On remarque de plus que 1/2 est une solution particulière : $y(t)=\frac{1}{2}+(a\cos 3t+b\sin 3t)e^t$, $a,b\in\mathbb{R}$.
- (e) De même, la solution générale de l'équation sans second membre est $(a\cos 2x + b\sin 2x)e^{-x}$. Si on cherche une solution particulière sous la forme $\alpha\cos x + \beta\sin x$, on en trouve une pour $\beta = 1/2$ et $\alpha = 1$. Don la solution générale est $\cos x + \frac{1}{2}\sin x + (a\cos 2x + b\sin 2x)e^{-x}$, $a,b \in \mathbb{R}$.
- (f) De même, la solution générale de l'équation sans second membre est $ae^{-x} + be^{-2x}$. En cherchant une solution particulière de la forme $kxe^{-2x} =$ on trouve k = -1. Donc la solution générale est $ae^{-x} + (-x+b)e^{-2x}$, $a, b \in \mathbb{R}$.
- (g) Ici, l'équation associé a une racine double : -1. Donc la solution générale de l'équation sans second membre est de la forme $ae^{-t}+bte^{-t}$. Une solution particulière étant 2, la solution générale est $y(t)=2+ae^{-t}+bte^{-t}$, $a,b\in\mathbb{R}$.
- 3. On décompose la fraction en éléments simples : $\frac{1}{x^2 a^2} = \frac{1}{2a} (\frac{1}{x a} \frac{1}{x + a})$. Une primitive est donc $\frac{1}{2a} (\ln|x a| \ln|x + a|) = \frac{1}{2a} \ln|\frac{x a}{x + a}|$.

On peut alors intégrer l'équation différentielle par $\frac{1}{2a}\ln|\frac{y-a}{y+a}|=bx+\text{constante}$, d'où $\frac{y-a}{y+a}=Ce^{2abx}$, ou encore $y=a\frac{1+Ce^{2abx}}{1-Ce^{2abx}}$, C étant une constante réelle non nulle.

4. On a $y(t) = \int_0^t f(s)e^{-at}e^{as} ds = e^{-at}\int_0^t f(s)e^{as}$, donc on vérifie en dérivant que y'(t) = -ay(t) + f(t).

On a alors : pour t négatif, y(t) = 0.

pour
$$0 \le t \le 1$$
, $y(t) = \int_0^t e^{-a(t-s)} ds = \frac{e^{-at} - 1}{a}$

pour
$$t \ge 1$$
, $y(t) = \int_0^1 e^{-a(t-s)} ds = \frac{1 - e^a}{a} e^{-at}$

P Exercices pratiques:

1. L'équation est une équation différentielle linéaire du premier ordre à coefficients constants. La solution de l'équation sans second membre est $Ke^{-\frac{Rt}{L}}$.

On peut chercher une solution particulière de la forme $A\cos\omega t + B\sin\omega t$. En intégrant dans l'équation, on obtient le système $\omega BL + RA = 0$ et $-\omega AL + RB = U_0$, donc $B = \frac{RU_0}{(\omega L)^2 + R^2}$ et

$$A = \frac{-L\omega U_0}{(\omega L)^2 + R^2}$$
. On peut aussi écrire $A = U_0 \cos \varphi$ et $B = U_0 \sin \varphi$ avec $\varphi = \arccos(\frac{-L\omega}{(\omega L)^2 + R^2})$, la solution particulière est alors $U_0 \cos(\omega t - \varphi)$.

La solution générale est donc $i(t) = Ke^{-\frac{Rt}{L}} + U_0\cos(\omega t - \varphi)$, $K \in \mathbb{R}$, et la solution particulière pour i(0) = 0 est obtenue avec $K = -U_0\cos\varphi$.

- 2. (a) En écrivant la relation l'accélération à la somme des forces, on trouve $ma = mv' = -kv^2 + mg$ d'où l'équation $v' = -\frac{k}{m}v^2 + g$.
 - (b) Cette équation peut se transformer en $\frac{v'}{v^2 \frac{gm}{k}} = -\frac{k}{m}$.

Si on note $a=\sqrt{\frac{gm}{k}}$ et $b=-\frac{k}{m}$, on sait grâce à l'exercice T3 que $v(t)=a\frac{1+Ce^{2abt}}{1-Ce^{2abt}}$. De plus, $v(0)=a\frac{1+C}{1-C}$, donc $C=\frac{v(0)-a}{v(0)+a}$.

- (c) Si on fait tendre t vers l'infini, ab étant ici négatif, on constate que la vitesse tend vers la valeur limite $a = \sqrt{\frac{gm}{k}}$. A.N: la vitesse limite est $v_l = 5,11 \text{ m.s}^{-1}$ soit 18,4 km/h.
- (d) Si on appelle v_s cette "vitesse de sécurité", $v_s=20$ km/h =5,56 m.s $^{-1}$, on doit résoudre l'équation $v(t) \leq v_s$, i.e $a \frac{1+Ce^{2abt}}{1-Ce^{2abt}} \leq v_s$. Cette expression se transforme en $1+Ce^{2abt} \leq \frac{v_s}{v_l}(1-Ce^{2abt})$, soit encore $C(1+\frac{v_s}{v_l})e^{2abt} \leq \frac{v_s}{v_l}-1$.

Donc on doit avoir $2abt \le \ln \frac{v_s - v_l}{v_s + v_l} - \ln C$. Comme $ab = -\sqrt{g}\sqrt{k/m} = -g/v_l$, on a donc finalement:

$$t \ge \frac{v_l}{2g} \left(\ln \frac{v_s + v_l}{v_s - v_l} - \ln \frac{v(0) + v_l}{v(0) - v_l} \right)$$

A.N: t = 0,78s.

3. La solution générale de l'équation sans second membre est $A\cos(\frac{t}{\sqrt{LC}}+\phi)$, $A, \phi \in \mathbb{R}$.