exercices théoriques

1. Donner la forme algébrique et le module des nombres complexes :

$$a = (3-2i)(1+4i);$$
 $b = i(1+i);$ $c = (2-3i)(2+3i)$
 $d = \frac{1}{2+i};$ $e = \frac{1-i}{2+i};$ $f = (1+2i)^2$

2. Donner la forme algébrique, le module et l'argument des nombres :

$$a = R + jL\omega; \quad b = (1 - i)(1 + \sqrt{3}i); \quad c = \frac{1+i}{2-i}; \quad (*) \ d = \frac{e^{1+2i} - 1}{1+2i};$$

$$e = \frac{U}{1+jRC\omega}(U>0); \ f = (1 - \sqrt{3}i)^{2021}; \ (*) \ g = \frac{1}{1 - xe^{i\theta}} \text{ si } x \in] - 1, 1[.$$

corrigé succinct :

le module de a est $\sqrt{R^2 + (L\omega)^2}$, son argument est $\arctan(L\omega/R)$.

Pour b, en développant on trouve $b = 1 + \sqrt{3} + (-1 + \sqrt{3})i$. Pour déterminer sa forme

trigonométrique, il est plus simple de calculer séparément celle de 1-i et celle de $1+\sqrt{3}i$ avant de multiplier les modules et d'additionner les arguments pour obtenir ceux de b:

$$1 - i = \sqrt{2}e^{-i\frac{\pi}{4}} \text{ et } 1 + \sqrt{3}i = 2e^{i\frac{\pi}{3}}, \text{ donc}$$
 $b = 2\sqrt{2}e^{i\frac{\pi}{12}}.$

Pour c on obtient la forme algébrique (cartésienne) avec la méthode de la quantité conjuguée : on multiplie numérateur et dénominateur par le conjugué 2+i du dénominateur 2-i :

$$c = \frac{(2+i)(1+i)}{(2+i)(2-i)}$$
, d'où $c = \frac{1+3i}{5}$.

On trouve alors directement son module $\sqrt{10}/5$ et son argument $\arctan(3)$: la forme

exponentielle est donc
$$c = \frac{\sqrt{10}}{5} e^{i\arctan(3)}.$$

Pour d on écrit le numérateur sous sa forme algébrique $(e\cos(2)-1)+ie\sin(2)$, puis on obtient la forme algébrique de la fraction avec la méthode de la quantité conjuguée (on multiplie numérateur et dénominateur par le conjugué 1-2i du dénominateur) :

$$d = \frac{e\cos(2) - 1 + 2e\sin(2) + i(-2e\cos(2) + 2 + e\sin(2))}{5}.$$

Pour trouver la forme exponentielle il est préférable de revenir à la forme de l'énoncé : le module

vaut
$$|d| = \frac{\sqrt{(e\cos(2)-1)^2+(e\sin(2))^2}}{\sqrt{5}}$$
 et l'argument est la différence entre l'argument

du numérateur et celui du dénominateur, soit

$$\arg(d) = \arctan(e\sin(2)/(e\cos(2) - 1)) + \pi - \arctan(2).$$

Pour
$$e$$
, le module vaut $U/\sqrt{1+(RC\omega)^2}$ et l'argument vaut

$$arg(U) - arg(1 + jRC\omega) = 0 - arctan(RC\omega)$$
 soit ____ - $arctan(RC\omega)$.

La forme algébrique est
$$e=U\frac{1-jRC\omega}{1+(RC\omega)^2}$$
.

Le module de f est 2^{2021} et l'argument de g est $-2021\pi/3$ soit encore $-(336*6+5)\pi/3=-5\pi/3=\pi/3$. On peut donc écrire la forme algébrique à partir de la

forme trigonométrique
$$f = 2^{2021}(\cos(\pi/3) + i\sin(\pi/3)) = 2^{2021}(\frac{1}{2} + i\frac{\sqrt{3}}{2}).$$

Pour q en multipliant par le conjugué du dénominateur, c'est-à-dire par

$$1 - xe^{-i\theta} = 1 - x\cos(\theta) + ix\sin(\theta), \text{ on trouve} \qquad g = \frac{1 - x\cos\theta + ix\sin\theta}{1 + x^2 - 2x\cos\theta}.$$

3. Calculer $\sin 5\theta$ en fonction de $\sin \theta$.

$$\sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta.$$

4. * On considère pour $x \in]-\pi/2, +\pi/2[f(x) = \frac{1+i\tan x}{1-i\tan x}.$

Donner les parties réelle et imaginaire, le module, l'argument de f(x). En déduire l'expression de $\cos(2x)$ en fonction de $\tan x$.

$$\frac{\text{corrig\'e succinct}: f(x) = \frac{(1+i\tan x)^2}{1+\tan^2 x} = \frac{1-\tan^2 x + 2i\tan x}{1+\tan^2 x}, \text{donc}}{1+\tan^2 x}$$

$$\text{re}\left(f(x)\right) = \frac{1-\tan^2 x}{1+\tan^2 x} \text{ et im}\left(f(x)\right) = \frac{2\tan x}{1+\tan^2 x}. \left|f(x)\right| = \frac{(1-\tan^2 x)^2 + (2\tan x)^2}{(1+\tan^2 x)^2} = \frac{1+\tan^4 x + 2\tan^2 x}{(1+\tan^2 x)^2} = 1.$$

Mais on voit aussi, en multipliant numérateur et dénominateur par $\cos x$, que $f(x) = \frac{\cos x + i \sin x}{\cos x - i \sin x} = \frac{e^{ix}}{e^{-ix}} = e^{2ix} = \cos 2x + i \sin 2x : \arg(f(x)) = 2x$, et donc $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$ et de plus en comparant les deux expressions de f(x), $\sin 2x = \frac{2\tan x}{1 + \tan^2 x}.$

- 5. Linéariser:
- (a) $\sin^2 \theta$
- (b) $\cos^4 \theta$
- (c) $\sin^3 \theta \cos^2 \theta$

corrigé succinct : on utilise les formules d'Euler..

(a)
$$\sin^2 \theta = (\frac{e^{i\theta} - e^{-i\theta}}{2i})^2 = -\frac{1}{4}(e^{2i\theta} - 2 + e^{-2i\theta}), \quad \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta).$$

(b) De même en développant $\left(\frac{e^{i\theta}+e^{-i\theta}}{2}\right)^4$, on trouve $\cos^4\theta=\frac{\cos 4\theta+4\cos 2\theta+3}{8}$.

(c) De même,
$$\sin^3 \theta \cos^2 \theta = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^3 \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$$
, donc

$$\sin^3 \theta \cos^2 \theta = \frac{-\sin 5\theta + \sin 3\theta + 2\sin \theta}{16}.$$

- 6. Résoudre sur \mathbb{R} et \mathbb{C} les équations :
 - (a) $x^2 + 2x 2 = 0$ (b) $x^2 + x + 1 = 0$ (c) $2x^2 + 3x + 5 = 0$

- (d) $x^2 + 3 = 0$ (e) $-3x^2 + 2x 1 = 0$ (f) $x^3 = 1$

corrigé succinct : On utilise les formules avec le discriminant :

- (d) ici le discriminant est inutile : $x^2 = -3$ a deux solutions non réelles conjuguées. $+\sqrt{3}i$ et
 - (b) le discriminant vaut -3, donc les racines non réelles conjuguées sont $\frac{-1 \pm \sqrt{3}i}{2}$
- (f) on cherche les solutions sous la forme $x = re^{i\theta}$. On a donc $x^3 = r^3e^{3i\theta} = 1$ donc en identifiant module et argument : $r^3 = 1$ et $3\theta = 2\pi + 2k\pi$, soit r = 1 et $\theta = 2\pi/3 + 2k\pi/3$, ce

qui donne les trois solutions $e^{i0/3}$, $e^{2i\pi/3}$ et $e^{4i\pi/3}$ soit $1, \frac{-1+\sqrt{3}i}{2}$ et $\frac{-1-\sqrt{3}i}{2}$.

- 7. Effectuer la division selon les puissances décroissantes de :
 - (a) $X^4 X^3 + 3X^2 + 1$ par $X^2 + 3X + 1$

- (b) $X^5 + 2X^3 3X 2$ par $X^3 + X + 1$
- (c) $6X^5 7X^4 + 1$ par $(X-1)^2$

corrigé succinct :

(a) On pose la division :

donc
$$X^4 - X^3 + 3X^2 + 1 = (X^2 + 3X + 1)(X^2 - 4X + 14) - 38X - 13.$$

(b) De même on pose la division :

donc

on trouve
$$X^5 + 2X^3 - 3X - 2 = (X^3 + X + 1)(X^2 + 1) - X^2 - 4X - 3.$$

- (c) Pour effectuer la division il faut commencer par développer le diviseur : (X - $(1)^2 = X^2 - 2X + 1$. On procède alors de même et on obtient la relation $6X^5 - 7X^4 + 1 = (X^2 - 2X + 1)(6X^3 + 5X^2 + 4X + 3) + 2X - 2.$
- 8. Factoriser sur \mathbb{C} et sur \mathbb{R} les polynômes :

(a)
$$3X^2 + 6X - 15$$
 (b) $3X^4 + 6X^2 - 15$ (c) $3X^3 - 3X^2 + 6X - 6$

(d)
$$X^4 - 16$$
 (e) $X^4 + 2X^3 - X - 2$ (f) $2X^3 - 3X^2 - 3X + 2$

(g)
$$X^5 + X^4 - 16X - 16$$
 (h) $X^3 - X^2 + X - 1$

corrigé succinct :

(a) $3X^2 + 6X - 15$:

Pour factoriser un polynôme de degré 2 il suffit de déterminer ses racines (et considérer son coefficient dominant): s'il a des racines il peut alors s'écrire $a(X-r_1)(X-r_2)$, s'il n'a pas de racines (sur \mathbb{R}) il est irréductible.

> Ici, le discriminant vaut 216, donc le polynôme est à racines réelles et elles valent $(-6 + \sqrt{216})/6 = -1 + \sqrt{6}$ et $(-6 - \sqrt{216})/6 = -1 - \sqrt{6}$.

Le polynôme est alors divisible par $X-(-1+\sqrt{6})$ et par $X-(-1-\sqrt{6})$.

Comme de plus le coefficient dominant est 3, on peut écrire sa factorisation, sur \mathbb{R} comme sur \mathbb{C} :

$$3X^{2} + 6X - 15 = 3(X - (-1 + \sqrt{6}))(X - (-1 - \sqrt{6}))$$

(remarque : il est préférable de laisser les parenthèses dans cette expression pour bien faire apparaître les X-a où a est une racine)

(b)
$$3X^4 + 6X^2 - 15$$

Ici on peut rechercher les racines en remarquant qu'il n'a que des puissances paires de X, on peut donc poser $Y=X^2$. Le polynôme vaut alors $3Y^2+6Y-15$, et on reconnaît le polynôme étudié à la question précédente.

On peut donc utiliser la factorisation précédente :

$$3X^4 + 6X^2 - 15 = 3(X^2 - (-1 + \sqrt{6}))(X^2 - (-1 - \sqrt{6})).$$

Peut-on aller plus loin? Il faut essayer de factoriser séparément chacun des deux polynômes apparus. Ont-ils des racines réelles?

Oui pour le premier, on peut donc le factoriser sous la forme :

$$X^{2} - (-1 + \sqrt{6}) = (X - \sqrt{-1 + \sqrt{6}})(X + \sqrt{-1 + \sqrt{6}}) \text{ sur } \mathbb{R} \text{ comme sur } \mathbb{C}.$$

Non pour le second : sur \mathbb{R} il est irréductible, et donc le polynôme $3X^4 + 6X^2 - 15$ a pour factorisation réelle :

$$3X^4 + 6X^2 - 15 = 3(X - \sqrt{-1 + \sqrt{6}})(X + \sqrt{-1 + \sqrt{6}})(X^2 - (-1 - \sqrt{6})) \text{ sur } \mathbb{R}$$

En revanche, sur \mathbb{C} , $X^2 - (-1 - \sqrt{6})$ a pour racines $i\sqrt{1 + \sqrt{6}}$ et $-i\sqrt{1 + \sqrt{6}}$. Et on peut donc écrire : $X^2 - (-1 - \sqrt{6}) = (X - i\sqrt{1 + \sqrt{6}})(X + i\sqrt{1 + \sqrt{6}})$.

Finalement sur \mathbb{C} :

$$3X^4 + 6X^2 - 15 = 3(X - \sqrt{-1 + \sqrt{6}})(X + \sqrt{-1 + \sqrt{6}})(X - i\sqrt{1 + \sqrt{6}})(X + i\sqrt{$$

(c)
$$3X^3 - 3X^2 + 6X - 6$$
:

Quand le polynôme à factoriser est de degré 3 ou plus, qu'il n'y a pas d'astuce comme celle de l'équation bicarrée du b), la méthode générale consistera à chercher une ou plusieurs racines "évidente", parmi les diviseurs du terme constant. On peut donc essayer successivement les diviseurs de 6 : 1, -1, 2, -2, 3, -3, 6, -6...jusqu'à trouver une racine.

Ici on a de la chance, car on voit tout de suite que 1 est racine : $3.1^3-3.1^2+6-6=0$. On pose alors la division de $3X^3-3X^2+6X-6$ par X-1: on sait qu'elle tombera juste, le reste sera nul. On trouve : $3X^3-3X^2+6X-6=(X-1)(3X^2+6)$. Il reste à factoriser $3X^2+6$: il s'agit d'un polynôme de degré 2, sans racine réelle…il est donc irréductible sur \mathbb{R} , et donc :

sur
$$\mathbb{R}$$
, $3X^3 - 3X^2 + 6X - 6 = (X - 1)(3X^2 + 6)$, on peut quand même sortir le coefficient 3: $3X^3 - 3X^2 + 6X - 6 = 3(X - 1)(X^2 + 2)$

Sur \mathbb{C} , $3X^2 + 6$ a pour racines $\pm i\sqrt{2}$, et donc on peut factoriser $3X^2 + 6 = 3(X - i\sqrt{2})(X + i\sqrt{2})$.

Et donc finalement, sur \mathbb{C} ,

$$3X^3 - 3X^2 + 6X - 6 = 3(X - 1)(X - i\sqrt{2})(X + i\sqrt{2})$$

(d)
$$X^4 - 16$$

Ici on pourrait chercher des racines "évidentes" (on trouverait 2, -2...), mais il sera plus rapide de remarquer que les racines de ce polynôme sont les racines 4èmes de 16.

Pour les déterminer on peut écrire $16=16e^{i0}$ et juste utiliser la formule de cours : les racines sont les $2e^{0/4+2ik\pi/4}$ soit : $2e^0$, $2e^{i\pi/2}$, $2e^{i\pi}$ et $2e^{3i\pi/2}$, soit 2, -2, 2i, -2i.

On obtient ainsi directement la factorisation sur C

$$X^4 - 16 = (X - 2)(X + 2)(X - 2i)(X + 2i)$$

Pour en déduire la factorisation sur \mathbb{R} il suffit de garder les facteurs réels, et de multiplier entre eux les facteurs non réels conjugués :

Sur
$$\mathbb{R}$$
 $X^4 - 16 = (X - 2)(X + 2)(X^2 + 4)$

(e)
$$X^4 + 2X^3 - X - 2$$

On cherche des racines "évidentes"...et on en trouve deux : 1 et -2. On peut du coup diviser d'un coup par le produit $(X-1)(X-(-2))=X^2+X-2$, le quotient vaut X^2+X+1 et le reste est bien sûr nul (si ce n'était pas le cas, ce serait le signe que l'on a fait une erreur : sur les racines "évidentes" ou dans la division elle-même).

On obtient donc la factorisation $X^4 + 2X^3 - X - 2 = (X - 1)(X + 2)(X^2 + X + 1)$. Le polynôme $X^2 + X + 1$ de discriminant strictement négatif n'a pas de racine réelle.

Donc la factorisation est terminée sur \mathbb{R} :

$$X^4 + 2X^3 - X - 2 = (X - 1)(X + 2)(X^2 + X + 1)$$

Sur $\mathbb C$ on obtient les racines $\frac{-1\pm i\sqrt{3}}{2}$ et donc la factorisation :

sur
$$\mathbb{C}$$
: $X^4 + 2X^3 - X - 2 = (X - 1)(X + 2)(X - \frac{-1 + i\sqrt{3}}{2})(X - \frac{-1 - i\sqrt{3}}{2})$

remarque : si l'on ne voit qu'une seule des deux racines évidentes, r=1 ou r=-2, on peut commencer par diviser par X-r, obtenir un quotient de degré 3, et recommencer : il aura l'autre racine comme racine évidente...c'est plus long mais correct.

(f)
$$2X^3 - 3X^2 - 3X + 2$$

Ici on trouve pour racine évidente -1.

La division du polynôme par X+1 donne pour quotient $2X^2-5X+2$, de discriminant $\Delta=25-16=9$. Les racines sont donc 2 et 1/2.

Ainsi, sur
$$\mathbb{R}$$
 comme sur \mathbb{C} , $2X^3 - 3X^2 - 3X + 2 = 2(X+1)(X-1/2)(X-2)$

3

remarque 1 : attention au coefficient 2, présent dans le terme dominant $2X^3$ au début, à ne pas oublier dans la factorisation obtenue à l'aide des racines.

remarque 2: si on repère à la fois -1 et 2 comme racines évidente, on peut diviser directement par (X+1)(X-2) et gagner du temps.

(g)
$$X^5 + X^4 - 16X - 16$$

-1 est une racine évidente. On peut donc diviser le polynôme par X+1, et le quotient obtenu est X^4-16 . Mais X^4-16 a déjà été factorisé plus haut...

On obtient donc la factorisation sur $\mathbb C$

$$X^5 + X^4 - 16X - 16 = (X+1)(X-2)(X+2)(X-2i)(X+2i)$$

et sur
$$\mathbb{R}$$
 $X^5 + X^4 - 16X - 16 = (X+1)(X-2)(X+2)(X^2+4)$ (h) $X^3 - X^2 + X - 1$

Ici 1 est racine évidente, et le quotient de la division par X-1 donc X^2+1 .

Ainsi on obtient la factorisation sur
$$\mathbb{C}$$
 $X^3 - X^2 + X - 1 = (X - 1)(X - i)(X + i)$

et sur
$$\mathbb{R}$$
 $X^3 - X^2 + X - 1 = (X - 1)(X^2 + 1)$

exercices pratiques

1. TPs « circuits RC » (électricité S1) et « filtrage » (électronique S2)

On considère un circuit composé d'une résistance R et d'un condensateur de capacité C, montés de sorte que la fonction de transfert du circuit soit

$$\underline{H}(\omega) = \frac{1}{1 + iRC\omega}$$
, où ω représente la pulsation du signal d'entrée.

- (a) calculer le module $|\underline{H}|$ et le gain en décibels $G_{\mathrm{dB}} = 20 \log_{10} |\underline{H}|$
- (b) calculer l'argument de \underline{H}
- (c) calculer la valeur de ces fonctions pour la pulsation de coupure $\omega_c=1/RC$
- (d) déterminer les limites de ces fonctions quand ω tend vers 0^+ puis quand ω tend vers l'infini
- (e) quel est le lien entre la pulsation et la fréquence du signal d'entrée ? Déduire de la question précédente le type de filtre réalisé par ce circuit.

corrigé succinct :

- 1. ici on n'a aucune nécessité ni aucun intérêt à utiliser la forme algébrique. On peut directement écrire le module par quotient des modules $|\underline{H}| = \frac{1}{\sqrt{1+R^2C^2\omega^2}}$ est le gain est donc $G_{\rm dB} = -10\log_{10}(1+R^2C^2\omega^2)$
- 2. Ici de même, on écrit l'argument comme différence des arguments : l'argument de \underline{H} est $\arg(1) \arg(1+jRC\omega) = 0 \arctan(RC\omega) = -\arctan(RC\omega)$.
- 3. On trouve alors un gain qui vaut $-20\log_{10}(1+1)=-20\log_{10}(2)$ soit approximativement -3dB, et un argument $-\arctan(1)$ soit $-\pi/4$.
- 4. quand ω tend vers 0, le module tend vers 1, le gain vers 0, et l'argument vers 0. Quand ω tend vers $+\infty$, le module tend vers 0, le gain vers $-\infty$, et l'argument vers $-\pi/2$.
- 5. Le lien entre pulsation et fréquence est $\omega = 2\pi f$.
 - Ainsi, d'après la question précédente, en basse fréquence (quand omega et donc f sont proches de 0) le filtre modifie peu le signal, en haute-fréquence (ω et f tendant vers l'infini) le signal est très atténué (module proche de 0) et déphasé (argument proche de $-\pi/2$) : il s'agit d'un filtre passe-bas.